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Abstract

There is a growing need for models that are inter-
pretable and have reduced energy/computational
cost (e.g., in health care analytics and federated
learning). Examples of algorithms to train such
models include logistic regression and boosting.
However, one challenge facing these algorithms
is that they provably suffer from label noise; this
has been attributed to the joint interaction be-
tween oft-used convex loss functions and sim-
pler hypothesis classes, resulting in too much
emphasis being placed on outliers. In this work,
we use the margin-based α-loss, which continu-
ously tunes between canonical convex and quasi-
convex losses, to robustly train simple models.
We show that the α hyperparameter smoothly in-
troduces non-convexity and offers the benefit of
“giving up” on noisy training examples. We also
provide results on the Long-Servedio dataset for
boosting and a COVID-19 survey dataset for lo-
gistic regression, highlighting the efficacy of our
approach across multiple relevant domains.

1 INTRODUCTION

In several critical infrastructure applications, simple mod-
els are favored over complex models. In health care an-
alytics, simple models are typically preferred for their in-
terpretability so that practitioners can audit the correlations
the model uses for decision making (Rudin, 2019; Caruana
et al., 2015; Nori et al., 2021; Chen et al., 2021). In feder-
ated learning, simple models can be preferred for compu-
tational and energy efficiency, since edge devices are het-
erogeneous (Kairouz et al., 2019; Viola and Jones, 2001).
Examples of learning algorithms that train simple models
include logistic regression and boosting, particularly when
the weak learner of the boosting algorithm is weaker (e.g.,
decision/regression trees with low maximum depth).
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While simple models may offer more interpretability or en-
ergy efficiency, they are known to suffer, provably, from la-
bel noise (Ben-David et al., 2012; Ji et al., 2022; Rolnick
et al., 2017). Indeed, Long and Servedio (2008) showed
that boosting algorithms that minimize convex losses over
linear weak learners can achieve fair coin test accuracy af-
ter being trained with an arbitrarily small amount of (sym-
metric) label noise. In essence, Long and Servedio (2008)
construct a pathological dataset which exploits the sensi-
tivity of linear classifiers and the inability of convex losses
to “give up” on noisy training examples, even if the convex
boosting algorithm is regularized or stopped early.

Figure 1: Quasi-convex α-loss booster (α = 2) vs. convex
boosters (α ≤ 1) on decision stumps for the Long-Servedio
dataset. Full version and details in Section 5.

Recent work argues that the negative result of Long and
Servedio (2008) could perhaps be circumvented by increas-
ing the complexity of the weak learner (Mansour et al.,
2022), however, there are certain benefits for utilizing sim-
ple models. Thus, one remaining degree of freedom to ro-
bustly train a simple model is by tuning the loss function
itself. To this end, we use the recently introduced margin-
based α-loss, which smoothly tunes through the exponen-
tial (α = 1/2), logistic (α = 1), and sigmoid (α = ∞)
losses (Sypherd et al., 2022a). The α hyperparameter con-
trols the convexity of the loss, since for 0 < α ≤ 1 the loss
is convex, and for α > 1 the loss is quasi-convex. We show
that tuning α > 1 allows the loss to “give up”, which refers
to how it evaluates large negative margins (preview Fig-
ure 2 and see the exponential vs. sigmoid losses). Hence,
“giving up” on noisy training examples reduces the sensi-
tivity of a simple hypothesis class (see Figure 1).
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Our contributions are as follows:

1. In Theorem 1, we show that there exist robust solu-
tions of the margin-based α-loss for α > 1 to the prob-
lem of Long and Servedio (2008); we verify this result
with simulation (Figure 3) and experimental results
(Section 5.1), where we show increased gains when
the maximum depth of the (decision/regression) tree
weak learner is restricted, i.e., for simpler models.

2. Building on the results in 1, we present a novel boost-
ing algorithm (Algorithm 1 in Section 3.1), called
AdaBoost.α, that may be of independent interest.
The novelty of AdaBoost.α is that it smoothly tunes
through vanilla AdaBoost (minimizing the exponen-
tial loss, α = 1/2), LogAdaBoost (minimizing the
logistic loss, α = 1) (Schapire and Freund, 2013), to
non-convex “AdaBoost-type” algorithms for α > 1,
all with the single α hyperparameter.

3. Noticing that the boosting setup of Long and Servedio
(2008) ultimately reduces to a two-dimensional lin-
ear problem, we theoretically demonstrate robustness
of the margin-based α-loss for α > 1 under linear
models of arbitrary dimensions with an upperbound
(Theorem 2) and dominating terms also appearing in
a lowerbound (Theorem 3). In essence, we provide
guarantees on the quality of optima, showing with up-
per and lower bounds on the noisy gradient that α > 1
is better for “good solutions” than α ≤ 1.

4. Finally, in Section 5.2, we report experimental results
on the logistic model for a synthetic Gaussian Mixture
Model (GMM) and a COVID-19 survey dataset (Sa-
lomon et al., 2021). In particular, we show that α > 1
is able to preserve the interpretability of the linear
model for the COVID-19 data, while also providing
robustness to label noise. In addition, we provide
straightforward heuristics for tuning α.

1.1 Related Work

Convex and Non-Convex Losses While a small amount
of carefully introduced label noise has been observed to
improve the generalization capabilities of a model (Li
et al., 2020), in general label noise during training is
very detrimental to learning and thus represents an im-
portant problem for the community (Frénay and Verley-
sen, 2013; Rauscher et al., 2008; Gorber et al., 2009). In
an effort to address this, many works propose reweight-
ing/augmenting/regularizing/tuning convex loss functions
to train robust models (Natarajan et al., 2013; Ma et al.,
2020; Liu and Guo, 2020; Ghosh et al., 2017; Patrini et al.,
2017; Lee et al., 2006; Lin et al., 2017; Leng et al., 2022).
Other approaches include abstention (Thulasidasan et al.,
2019; Ziyin et al., 2020; Cortes et al., 2016) and early stop-
ping (Bai et al., 2021), however, both techniques also typi-
cally revolve around a convex loss.

Despite the fact that providing strong optimization guaran-
tees for non-convex losses is nontrivial (Mei et al., 2018),
non-convex loss functions (satisfying certain basic condi-
tions, e.g., differentiability, classification-calibration (Lin,
2004; Bartlett et al., 2006)) have been observed to provide
superior robustness over convex losses (Beigman and Kle-
banov, 2009; Manwani and Sastry, 2013; Nguyen and San-
ner, 2013; Barron, 2019; Zhang and Sabuncu, 2018; Zhao
et al., 2010; Sypherd et al., 2019; Chapelle et al., 2008;
Wu and Liu, 2007; Cheamanunkul et al., 2014; Masnadi-
Shirazi and Vasconcelos, 2009). Intuitively, non-convex
loss functions seem to have a sophisticated regularization
ability where they implicitly assign less weight to misclas-
sified training examples, and thus algorithms optimizing
such losses are often less perturbed by outliers during train-
ing. This contrasts with another set of approaches (Lee
et al., 2016; Yao et al., 2021; Maas et al., 2019; Bootkrajang
and Kabán, 2012; Lee et al., 2016) which seek to explicitly
estimate the noise transition matrix, sometimes requiring
many parameters to do so.

α-loss The α-loss, where α ∈ (0,∞], arose in information
theory (Liao et al., 2018; Arimoto, 1971), and was recently
introduced to ML (Sypherd et al., 2019). It smoothly tunes
through several important losses (exponential for α = 1/2,
log for α = 1, 0-1 for α = ∞), and has statistical,
optimization, and generalization tradeoffs dependent on
α (Sypherd et al., 2022a). Indeed, for shallow CNNs the
α-loss is more robust for α > 1, however, the loss be-
comes increasingly more non-convex as α increases greater
than 1 (although there is a saturation effect), hence creating
an optimization/robustness tradeoff (Sypherd et al., 2020).
The α-loss is equivalent (under appropriate hyperparameter
restriction) to the Generalized Cross Entropy loss (Zhang
and Sabuncu, 2018), which was motivated by the Box-Cox
transformation in statistics (Box and Cox, 1964). Also, the
α-loss was recently shown to satisfy a statistical notion of
robustness for loss functions in the class probability estima-
tion setting (Sypherd et al., 2022b). More broadly, α-loss
and related quantities have been used in Generative Ad-
versarial Networks (Kurri et al., 2021, 2022) and in robust
Bayesian posterior estimation (Zecchin et al., 2022).

Convex and Non-Convex Boosting AdaBoost (Freund
and Schapire, 1997) (which minimizes the exponential
loss (Schapire and Freund, 2013)) is the groundbreak-
ing convex boosting algorithm. Later, the LogAdaBoost
(which minimizes the logistic loss) was proposed as a more
robust convex variant (Collins et al., 2002; McDonald et al.,
2003). Indeed, a SOTA boosting algorithm, XGBoost, min-
imizes (an approximated) logistic loss, rather than the ex-
ponential loss (Chen and Guestrin, 2016). Sypherd et al.
(2022b) recently introduced a novel boosting algorithm
called PILBoost, which minimizes a convex (proper) sur-
rogate approximation of the α-loss (Nock and Williamson,
2019; Reid and Williamson, 2010), and presented experi-
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mental results on the robustness of PILBoost.

However, the seminal work of Long and Servedio (2008)
showed that convex boosters provably suffer from label
noise, particularly for simple weak learners (Mansour et al.,
2022). Van Rooyen et al. (2015) proposed relaxing the non-
negativity condition of the convex loss in order to yield
robustness, but it seems that this is unable to completely
fix the problem (Long and Servedio, 2022). For this rea-
son, non-convex boosting algorithms have been considered
before (Masnadi-Shirazi and Vasconcelos, 2009; Cheama-
nunkul et al., 2014; Miao et al., 2015), but there remains
a large gap between the convex and non-convex realms.
Therefore, we propose directly using the margin-based α-
loss (rather than a “proper” convex approximation as in
PILBoost), which smoothly tunes through several canon-
ical convex and quasi-convex losses, for boosting. Our
AdaBoost.α (generalizing vanilla AdaBoost with α = 1/2
and LogAdaBoost with α = 1), “gives up” on noisy out-
liers during training (for α > 1), thus allowing practitioners
to continue using simpler models (e.g., for interpretability
or energy efficiency) in noisy settings.

2 PRELIMINARIES

2.1 Margin-Based α-loss

We consider the setting of binary classification. The learner
ideally wants to output a classifier H : X → {−1,+1}
that minimizes the probability of error, the expectation of
the 0-1 loss, however, this is NP-hard (Ben-David et al.,
2003). Thus, the problem is relaxed by optimizing a surro-
gate to the 0-1 loss over functions H : X → R, whose
output captures the certainty of prediction of the binary
label Y ∈ {−1, 1} associated with the feature vector
X ∈ X (Bartlett et al., 2006). The classifier is obtained
by making a hard decision, i.e., H(X) = sign(H(X)).
A surrogate loss is said to be margin-based if, the loss
associated to a pair (y,H(x)) is given by l̃(yH(x)) for
l̃ : R → R+ (Lin, 2004). The loss of the pair (y,H(x))
only depends on the product z := yH(x), i.e., the (un-
normalized) margin (Schapire and Freund, 2013). A neg-
ative margin corresponds to a mismatch between the signs
of H(x) and y, i.e., a classification error by H; a positive
margin corresponds to a correct classification by H .

Since probabilities are typically the inputs to loss func-
tions (e.g., log-loss, Matusita’s loss (Matusita, 1956), α-
loss (Sypherd et al., 2019)), an important function we use
is the sigmoid function σ : R → [0, 1], given by

σ(z) :=
1

1 + e−z
, (1)

where z := yH(x) is the margin. The sigmoid smoothly
maps real-valued predictions H : X → R to probabilities,
and in the multiclass setting, the sigmoid is generalized

Figure 2: (a) Margin-based α-loss (3) as a function of the
margin (z := yH(x)) for α ∈ {0.3, 0.5, 0.77, 1, 1.44,∞};
(b) its first derivative (see Lemma 1 in Appendix A) with
respect to the margin for the same set of α. The “giving up”
ability of the margin-based α-loss for α > 1 can be seen
from its first derivative, where it is more constrained (than
α ≤ 1) for large negative values of the margin.

by the softmax function (Goodfellow et al., 2016). Note
that the inverse of σ is the logit link (Reid and Williamson,
2010). Noticing that σ(−z) = 1− σ(z), we have that

σ′(z) :=
d

dz
σ(z) = σ(z)σ(−z) =

ez

(1 + ez)2
, (2)

and note that σ′ is an even function.

We now provide the definition of the margin-based α-loss,
which was first presented in (Sypherd et al., 2019) for α ∈
[1,∞] and extended to α ∈ (0,∞] (Sypherd et al., 2022a).

Definition 1. The margin-based α-loss, l̃α : R → R+,
α ∈ (0,∞], is given by, for α ∈ (0, 1) ∪ (1,∞),

l̃α(z) :=
α

α− 1

(
1− σ(z)1−1/α

)
, (3)

with l̃1(z) := − log σ(z) and l̃∞(z) := 1 − σ(z) by con-
tinuous extension, and note that l̃1/2(z) := e−z .

Indeed, l̃1/2, l̃1, and l̃∞ recover the exponential (Ad-
aBoost), logistic (logistic regression), and sigmoid (smooth
0-1) losses, respectively (Shalev-Shwartz and Ben-David,
2014); see Figure 2(a) for a plot of l̃α for several val-
ues of α versus the margin. Note that for fixed z ∈ R,
l̃α(z) is continuous in α. Sypherd et al. (2022a) showed
that the margin-based α-loss is classification-calibrated for
all α ∈ (0,∞] (Bartlett et al., 2006). Thus, tuning the
single α hyperparameter allows continuous interpolation
through calibrated, important loss functions, however, dif-
ferent regimes of α have differing robustness properties.
To this end, Sypherd et al. (2022a) presented the following
result regarding the convexity characteristics of l̃α.

Proposition 1. l̃α : R → R+ is convex for 0 < α ≤ 1 and
quasi-convex for α > 1.
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Recall that a function f : R → R is quasi-convex if,
for all x, y ∈ R and λ ∈ [0, 1], f(λx + (1 − λ)y) ≤
max {f(x), f(y)}, and also that any monotonic function
is quasi-convex (cf. (Boyd and Vandenberghe, 2004)).

In light of Proposition 1, consider Figure 2(a) for α = 1/2
(convex) and α = 1.44 (quasi-convex), and suppose for
concreteness that z1 = −1 and z2 = −5. The difference in
loss evaluations for these two negative values of the mar-
gin, which are representative of misclassified training ex-
amples, is approximately exponential vs. sub-linear; this
is similarly observed in Figure 2(b) with the first deriva-
tive of l̃α (see Lemma 1 in Appendix A). Intuitively, if a
training example is not fit well by the currently learned pa-
rameter values, then its margin will be (large and) negative
and it will incur more derivative update; if such a training
example is noisy, convex losses (e.g., α ≤ 1) encourage
the algorithm to continue fitting the bad example, whereas
non-convex losses (e.g., α > 1) would instead allow the al-
gorithm to “give up”. This tendency of convex losses could
be exacerbated for simpler models because they can suffer
significant perturbation by label noise (preview Figure 3)
vs. more nuanced function classes (Rolnick et al., 2017).

2.2 Boosting Setup

For the boosting context, we assume access to a training
sample S := {(xi, yi), i ∈ [m]} ⊂ X × {−1,+1} of m
examples, where [m] := {1, 2, ...,m}. Following the func-
tional gradient perspective of boosting (i.e., the blueprint
of (Friedman, 2001)), the boosting algorithm minimizes a
margin-based loss l̃ with respect to S over t ∈ [T ] iterations
in order to learn a function HT : X → R, given by

HT (·) :=
∑
t∈[T ]

θtht(·), (4)

where θt are the learned parameters and the ht : X → R
are weak learners with slightly better than random classi-
fication accuracy. On each iteration t ∈ [T ], we compute
weights for each training example using the full Ht−1 via

Dt(i) := −l̃′(yiHt−1(x
i)),∀i ∈ [m]. (5)

The weights Dt(i) are non-negative, normalized to form a
distribution over the training examples, and tend to increase
for an example that is incorrectly predicted (negative mar-
gin) by the previously learned Ht−1. Thus, weighting puts
emphasis on “hard” examples using the first derivative of
the loss function, which is a kind of functional gradient
descent (cf. (Schapire and Freund, 2013)). Then, the dis-
tribution over training examples Dt is passed to the weak
learning oracle (see Algorithm 1 for the general procedure).

In the next section, we show that using the derivative of the
margin-based α-loss in (5) recovers a novel robust boost-
ing algorithm, which may be of independent interest. We
also show that this algorithm has provable robustness guar-
antees on the negative result of Long and Servedio (2008).

3 ROBUSTNESS FOR BOOSTING

3.1 AdaBoost.α: Boosting with a Give Up Option

Algorithm 1 AdaBoost.α

1: Given: (x1, y1), . . . , (xm, ym) where xi ∈ X , yi ∈
{−1,+1}, and α ∈ (0,∞]

2: Initialize: H0 = 0.
3: for t = 1, 2, . . . , T :
4: Update, for i = 1, . . . ,m:

Dt(i) =

σ′(yiHt−1(x
i))σ(yiHt−1(x

i))−
1
α

Zt
,

(6)
where Zt is a normalization factor.

5: Return ht, weakly learned on Dt.
6: Compute error of weak hypothesis ht:

ϵt =
∑

i:ht(xi )̸=yi

Dt(i). (7)

7: Let θt = 1
2 log

(
1−ϵt
ϵt

)
.

8: Update: Ht = Ht−1 + θtht

9: Return H(·) = sign (HT (·))

Using the smooth tuning of the margin-based α-loss, we
present a novel robust boosting algorithm, AdaBoost.α in
Algorithm 1, which is obtained by noticing (from the func-
tional gradient perspective (Schapire and Freund, 2013))
that the exponential weighting of vanilla AdaBoost is re-
ally the negative first derivative of the exponential loss (i.e.,
α = 1/2). Generalizing this observation for all α ∈ (0,∞]
(via Lemma 1 in Appendix A) in (6), we obtain a hyperpa-
rameterized family of “AdaBoost-type” algorithms.

Indeed, AdaBoost.α also recovers LogAdaBoost (see Sec-
tion 1.1) for α = 1. For α > 1, AdaBoost.α be-
comes a non-convex boosting algorithm minimizing the
quasi-convex margin-based α-losses (Proposition 1). As
argued in Section 2.1, non-convex losses enable the boost-
ing algorithm to give up on noisy examples, and hence
yield a more robust model HT . Indeed, for these same
robustness reasons, non-convex boosting algorithms have
been considered before (see Section 1.1). However, the
novelty of AdaBoost.α is that it continuously interpolates
through convex AdaBoost variants (α ≤ 1) to non-convex
“AdaBoost-type” algorithms (α > 1). Thus, AdaBoost.α
allows the practitioner or meta-algorithm (He et al., 2021)
to tune how much one would like the algorithm to give up
on hard, possible noisy, training examples, which may be
useful in a distributed context (Cooper and Reyzin, 2017).
Lastly, we note that because of the modularity of the α
hyperparameter generalization, a multiclass extension of
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AdaBoost.α readily follows from standard approaches of
multiclass AdaBoost, e.g., Hastie et al. (2009).

3.2 Robustness on the Long-Servedio Dataset

Figure 3: A plot depicting optimal classification lines of
α̂ = 1 and α = 3 for the clean Long-Servedio dataset
S, where the penalizer examples are slightly separated for
display. The α̂, α optima are obtained by grid-search on
the noisy Long-Servedio dataset Ŝ, where the noise level
is chosen as p = 1/3, and γα̂ = 1/20 is subsequently
chosen for the negative result of Long and Servedio (2008)
to “kick-in”. The α̂ = 1 (logistic loss) line (red) is given
by (θα̂1 , θ

α̂
2 ) = (0.79, 1.41) for (8), and has fair coin ac-

curacy on S , misclassifying both penalizers. The α = 3
(quasi-convex loss) line (green) is given by (θα1 , θ

α
2 ) =

(41.59,−1.19 × 10−11), and has perfect accuracy on S.
This simulation aligns with Theorem 1 in that the quasi-
convex α = 3 loss is able to “give up” on the noisy copies
of the training examples and recover perfect classification
parameters. More α’s are presented in Appendix A.1.

In Long and Servedio (2008), the training sample S is a
multiset consisting of three distinct examples, one of which
is repeated twice, where the data margin 0 < γ < 1/6:

• S contains one copy of the example x = (1, 0) with
label y = +1. (Called the “large margin” example.)

• S contains two copies of the example x = (γ,−γ)
with label y = +1. (Called the “penalizers” since
these are the points that the booster will misclassify.)

• S contains one copy of the example x = (γ, 5γ) with
label y = +1. (Called the “puller”.)

Thus, all four examples in S have positive label and lie in
the unit disc {x : ∥x∥ ≤ 1}; see Figure 3 for a plot of
the dataset. Notice that H(x) = sign(x1) (sign of first co-
ordinate of x) corrrectly classifies all four examples in S
with margin γ > 0, so the weak learner hypothesis class
H = {h1(x) = x1, h2(x) = x2} is sufficient for perfect

classification of the dataset. The task for the boosting algo-
rithm is to learn parameters (θ1, θ2) such that, from (4),

Hl̃,γ(x1, x2) := θ1x1 + θ2x2, (8)

achieves perfect classification accuracy on S, where the de-
pendency on the loss l̃ and data margin γ is clear. Note
that (8) (we abbreviate Hl̃,γ = (θ1, θ2)) is a 2D lin-
ear model, so this setup parallels with logistic regression,
which we consider in the sequel. Following (Mansour
et al., 2022), we obtain a noisy sample Ŝ with label flip
probability 0 < p < 1/2 by including p−1 − 1 copies of S
and 1 copy of S with the labels flipped. Long and Servedio
(2008) showed that for any calibrated, convex loss l̃:

• When p = 0, i.e., the training sample is S, the optimal
Hl̃ = (θl̃1, θ

l̃
2) of l̃ has perfect accuracy on S.

• For any 0 < p < 1/2 generating training sample
Ŝ, there exists 0 < γl̃ < 1/6 such that the optimal
Hl̃,γl̃

= (θl̃1, θ
l̃
2) of l̃ has fair coin accuracy on S.

Intuitively, the interplay between the “large margin” and
“puller” examples forces a convex booster, boosting H, to
try to fit the noisy examples in Ŝ; this holds even if the
booster is regularized or stopped early, ultimately outputing
a model that misclassifies both “penalizers” of S (Long and
Servedio, 2008). Taking stock with l̃α, we see that this
pathology holds for α ≤ 1, since these are convex losses.
However, tuning α > 1 to quasi-convex losses is able to
induce the existence of optima which can fix the problem.

Theorem 1. Let 0 < p < 1/2 for Ŝ , and α̂ ≤ 1 for l̃α.
By Long and Servedio (2008), there exists 0 < γα̂ < 1/6
such that the optimal Hα̂,γα̂

= (θα̂1 , θ
α̂
2 ) is a fair coin on

S. On the other hand, for α ∈ (1,∞), l̃α has optimum
Hα,γα̂

= (θα1 , θ
α
2 ), where θα1 = O

(
αγ−1

α̂ log
(
p−1 − 1

))
and θα2 = 0, with perfect classification accuracy on S.

The proof of Theorem 1 (in Appendix A.1) is nontrivial
since α > 1 has a non-convex optimization landscape. In
Figure 3 where p = 1/3 and γα̂ = 1/20, the grid search
returns (θα1 , θ

α
2 ) = (41.59,−1.19 × 10−11), which aligns

with Theorem 1, namely that θα1 ≈ 3×20×log (2) ≈ 41.59
and θα2 ≈ 0. Intuitively, increasing α ∈ (1,∞) increases
θα1 , which may have practical utility (see Section 5.1), but
the rate for θα1 hints at why α = ∞ is not included, since
α = ∞ “pushes” θα1 to ∞, an impossibility; this is an ex-
ample of the robustness/optimization complexity tradeoff
inherent in the margin-based α-loss (Sypherd et al., 2020).

4 ROBUSTNESS FOR LINEAR MODELS

Taking inspiration from the boosting setup in Section 3.2,
where the weak learner recovered a 2D linear model in (8),
we now consider a generalization of the 2D linear hypoth-
esis class to d ∈ N dimensions, which in binary classifi-
cation is equivalent to the logistic model (Sypherd et al.,
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2022a). Ideally, one would like to give direct expressions
of gradient optimizers θ̂α as we do for the Long-Servedio
setup in Theorem 1, however, the logistic model has sig-
moid non-linearities that make this difficult for general data
distributions. Instead, we take an indirect approach where
we provide guarantees on the quality of gradient optima,
showing with upper and lower bounds that the noisy gra-
dient for α > 1 is smaller for “good solutions” than when
α = 1 (logistic regression). Thus, the motivation for The-
orems 2 and 3 is to argue that a gradient optimizer is more
likely to converge near a “good solution” when α > 1 than
when α = 1; indeed, this is another way to view how the
α > 1 “give up” on the noise in the training data.

We let X ∈ [0, 1]d be the normalized feature vector,
Y ∈ {−1,+1} the label, and we assume that the pair is
drawn according to an unknown distribution PX,Y . We as-
sume that the parameter vector θ ∈ Bd(r) where r > 0
and Bd(r) := {θ ∈ Rd : ∥θ∥2 ≤ r}. Thus, in this set-
ting ⟨yx, θ⟩ (inner product) is the margin, and note by the
Cauchy-Schwarz inequality that ⟨yx, θ⟩ ≤ r

√
d.

For α ∈ (0,∞], the expected margin-based α-loss, abbre-
viated the α-risk, evaluated at θ ∈ Bd(r) is given by

Rα(θ) := EX,Y

[
l̃α(⟨Y X, θ⟩)

]
, (9)

and for symmetric label noise rate 0 < p < 1/2,

Rp
α(θ) := EX,Y

[
Eτ∼Rad(p)

(
l̃α(⟨−τY X, θ⟩)

)]
, (10)

is called the noisy α-risk, where τ is a Rademacher random
variable with parameter p. In order to assess the efficacy of
a given parameter vector θ ∈ Bd(r), we are interested in
the gradient of the loss function, due to the use of gradient
methods for optimization (Boyd and Vandenberghe, 2004).
Thus, the gradient of the α-risk in (9) is

∇θRα(θ) := EX,Y

[
∇θ l̃

α(⟨Y X, θ⟩)
]
, (11)

∇θ l̃
α(⟨Y X, θ⟩) := −σ′(⟨Y X, θ⟩)σ(⟨Y X, θ⟩)− 1

αY X for
α ∈ (0,∞] from Lemma 1 in Appendix A. Hence, the
gradient of the noisy α-risk (10) is given by

∇θR
p
α(θ) := EX,Y

[
Eτ∼Rad(p)

(
∇θ l̃

α(⟨−τY X, θ⟩)
)]

.

(12)

We now present a result in the realizable setting, indicat-
ing (12) is smaller for α = ∞ (soft 0-1 loss) at any data
generating vector θ∗ ∈ Bd(r) than for α = 1 (logistic loss).

Theorem 2. Let 0 < p < 1/2 and let θ̂1, θ̂∞ ∈ Bd(r) be
such that ∇θR

p
1(θ̂

1) = 0 = ∇θR
p
∞(θ̂∞). We assume that

the following holds for all (x, y) ∈ X × {−1,+1},

⟨yx, θ̂∞⟩ ≥ ⟨yx, θ̂1⟩ > ln (2 +
√
3). (13)

If for any θ∗ ∈ Bd(r) we have ⟨yx, θ∗⟩ ≥ ⟨yx, θ̂∞⟩ for all
(x, y) ∈ X ×{−1,+1}, then we have that for α ∈ {1,∞},

∥∇θR
p
α(θ

∗)∥∞
Cα

≤ d
1
2 r
∣∣∣l̃α′′

(z∗α)
∣∣∣+ dr2

∣∣∣l̃α′′′
(z∗α)

∣∣∣ , (14)

where Cα = 2 for α = 1 and Cα = 2 − 4p for α = ∞,
and z∗α := argmaxz∈{⟨yx,θ̂α⟩}

∣∣∣l̃α′′
(z)
∣∣∣. Furthermore,

1− 2p <
d

1
2 r
∣∣∣l̃1′′(z∗1)∣∣∣+ dr2

∣∣∣l̃1′′′(z∗1)∣∣∣
d

1
2 r
∣∣∣l̃∞′′(z∗∞)

∣∣∣+ dr2
∣∣∣l̃∞′′′(z∗∞)

∣∣∣ . (15)

Theorem 2 uses symmetries of the first derivative of l̃α for
α ∈ {1,∞}; see Appendix A.2 for proof details. Intu-
itively, (15) indicates that there is a significant discrepancy
between the two upper bounds as the noise rate p → 1/2,
suggesting that ∇θR

p
α(·) is smaller at any data generating

θ∗ for α = ∞ than for α = 1 (logistic regression). Note
that the assumption in (13) is mild because both vectors
(rather than just θ̂∞) are assumed to achieve perfect accu-
racy on the clean data distribution.

In support of the upper bounds in Theorem 2, we now
present a uniform lower bound on the norm of (12) for the
skew-symmetric family of distributions (e.g., GMMs).

Theorem 3. Let 0 < p < 1/2, and for each y ∈ {−1, 1},
let X [y] have the distribution of X conditioned on Y =
y. We assume a skew-symmetric distribution, namely, that
X [1] d

= −X [−1], and E[X [1]] ̸= 0. We also assume that
r > 0 is small enough such that both of the following hold:

(1− 2p)(1− σ′(r
√
d)) <

∥E(X [1])∥2
E(∥X [1]∥2)

, (16)

and, for all α ∈ [1,∞],

e
r
√

d
α log (er

√
d + 1) <

(
p−1 − 1

)
log (e−r

√
d + 1). (17)

Then, we have that for every θ ∈ Bd(r),

∥∇θR
p
α(θ)∥2 ≥ ∥E[X [1]]∥2 − χE[∥X [1]∥2] > 0, (18)

where (letting χ̃ := σ(r
√
d)1−

1
ασ(−r

√
d)− 1)

χ :=


σ(r

√
d)− p α = 1

pχ̃− (1− p)χ̃ α ∈ (1,∞)

(1− 2p)(1− σ′(r
√
d)) α = ∞,

(19)

and χ is monotonically increasing in α ∈ [1,∞].

The proof of Theorem 3 (in Appendix A.3) is inspired by
the Morse landscape analysis in (Sypherd et al., 2019). In-
tuitively, (19) implies that the RHS in (18) is monotonically
decreasing in α ∈ [1,∞], which aligns with the ordering
given by the upper bounds in Theorem 2. Regarding the
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assumptions in (16) and (17), they are both more easily
satisfied for smaller r > 0, indicating alignment with the
underlying optimization landscape phenomena. Taken to-
gether, Theorems 2 and 3 suggest that larger α > 1 are
more robust than α = 1 (logistic regression); also, notice
the 1−2p coefficient for α = ∞ appearing in both bounds.

5 EXPERIMENTS

We now provide empirical results in support of the previous
sections, namely the efficacy of AdaBoost.α (Algorithm 1)
on the Long-Servedio dataset and the robustness of the
margin-based α-loss (Definition 1) in linear models, both
for α > 1. Further details and results are in Appendix B.

5.1 Boosting

For the boosting experiments, we utilize the experiment
version of the Long-Servedio dataset (Long and Servedio,
2008; Cheamanunkul et al., 2014), where the feature vec-
tors are 21D, which differs from the theory version pre-
sented in Section 3.2, where the feature vectors are 2D. A
full description of the dataset is presented in Appendix B.1.
We introduce symmetric label noise in the training data
with flip probability 0 < p < 1/2.

Robustness for simple models In Figure 4, we report re-
sults of AdaBoost.α with α > 1 (quasi-convex) vs. SOTA
convex boosters: vanilla AdaBoost (AdaBoost.α with α =
1/2), LogAdaBoost (AdaBoost.α with α = 1), XGBoost,
and PILBoost (see Section 1.1). For lower maximum tree
depth1 of the weak learner (i.e., simpler models), α > 1
boosters are better able to “give up” on the noisy labels
during training and the learned model yields better accu-
racy on the clean test set, aligning with Theorem 1. When
the maximum depth is increased, all of the algorithms per-
form roughly the same (Mansour et al., 2022).

Giving up In Figure 5, we plot the clean test accuracy of
AdaBoost.α boosting decision stumps for several values of
α versus iterations (i.e., number of weak learners). We see
that for α ≤ 1, increasing iterations does not increase accu-
racy; however, the α > 1 (non-convex) boosters continue
“giving up” on the noisy training examples, resulting in a
≈ 25% gain. For the large α > 1, i.e. α = 8 or 20,
the confidence intervals widen, which is an example of the
robustness/non-convexity tradeoff inherent in the α hyper-
parameter (Sypherd et al., 2020).

Smooth tuning It is not difficult to tune α for AdaBoost.α,
see Figure 16 in Appendix B.1 for consideration on the
Long-Servedio dataset. Sypherd et al. (2022a) indicated
that the effective range of α is typically bounded, e.g.,

1Increasing the maximum tree depth exponentially increases
the number of parameters for the weak learner, which impacts
energy consumption, interpretability, and generalization (e.g., via
VC dimension).

Figure 4: Box and whisker plots of the clean test accuracies
of several boosters with 100 decision trees of varying max-
imum depth on the Long-Servedio dataset for p = 0.1 sym-
metric label noise. The boxes are the interquartile ranges,
the lines in the boxes are the medians, and the diamonds
are the outliers. Note that AdaBoost.α with α > 1 (quasi-
convex), outperforms the convex boosters when the maxi-
mum depth is 1 or 2. Further commentary is in Section 5.1,
and more noise levels are in Appendix B.1.

α∗ ∈ [.8, 8] for shallow CNNs; AdaBoost.α appears to
be no different. In part, this is due to a saturation effect,
where α > 1 quickly “resembles” the ∞-loss (Sypherd
et al., 2020). Hence, tuning α > 1, but not too large, trades
a reasonable amount of non-convexity for robustness.

We see similar behavior in Figure 6 on the breast cancer
dataset (Wolberg et al., 1995), namely that for every non-
zero level of symmetric label noise, an α > 1 is able to
achieve greater accuracy on a clean test set, and we note the
smoothness of the gains with α, implying that tuning α is
simple for this dataset as well. In Appendix B.1, we present
full results of AdaBoost.α on the breast cancer dataset, sim-
ilarly observing gains for smaller maximum tree depths.

5.2 Linear Model

For the linear model experiments, we consider two
datasets: a 2D GMM, and a real-world COVID-19 survey
dataset (Salomon et al., 2021). We introduce symmetric
label noise into the training data for both.

For the effectiveness metric of using the margin-based α-
loss, we consider the model parameters themselves, as they
have clear interpretations in the form of odds ratios for the
linear setting. Specifically, we examine a linear classifier
trained with α-loss on noisy data and calculate the mean
squared error (MSE) of its learned parameters and those
of some baseline (further described for each dataset). By
ensuring that the model parameters are close to those of a
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Figure 5: Full version of Figure 1, where we plot clean
test accuracies vs. the number of iterations of AdaBoost.α
boosting decision stumps for several values of α on the
Long-Servedio dataset with p = 0.1 symmetric label noise.
Note that the solid curves correspond to mean accuracy and
shaded areas are the associated 95% confidence intervals
(from 80 runs of the experiment). This result reflects the
tendency of the convex α ≤ 1 boosters to continue overfit-
ting on the noisy training examples, and the ability of the
non-convex α > 1 boosters to continue judiciously “giving
up” on the noisy training examples. Further commentary is
in Section 5.1, and more noise levels are in Appendix B.1.

clean model, we preserve interpretability and accuracy.

2D GMM We first consider a 2D GMM with µ1 = (1, 1) =
−µ−1, identity covariance, and P[Y = 1] = 0.14 (aligning
with the next experiment). Thus, the Bayes-optimal classi-
fier is linear, and we compare with the separator learned by
training α-loss on noisy data. In Figure 7, we see that tun-
ing α > 1 results in a decreased MSE for every non-zero
noise level, and implies that the model learned by α > 1
is closer to the Bayes optimal line than the model learned
by α ≤ 1, aligning with Theorems 2 and 3. Tuning on
this simple dataset is quite easy as the MSE is fairly flat for
α > 1, see Appendix B.2 for more details.

COVID-19 survey data We now consider the US COVID-
19 Trends and Impact Survey (US CTIS) dataset (Salomon
et al., 2021), which consists of self-reported survey data.
We compress the dataset from 71 features to 42 categorical
and real-valued features including symptom data, behav-
iors, and comorbidities. For simplicity and interpretabil-
ity, 8 features, listed in Table 1, were chosen using cross
validation which contributed the most to the final predic-
tion (largest odds ratios). Each example is labeled either as
RT-PCR-confirmed COVID positive (1) or negative (−1),
based on self-reported diagnoses by study participants. Ex-
amples with clearly spurious responses (e.g., a negative
number of people in a household) or responses with miss-
ing features were removed. This pre-processing resulted in

Figure 6: Clean test accuracy of AdaBoost.α with 100
depth 1 decision trees on the breast cancer dataset suffer-
ing from various levels of symmetric label noise during
training. We see that vanilla AdaBoost (α = 0.5) strug-
gles at large noise levels, but simply tuning α larger gives
significant performance gains. For lower noise levels, tun-
ing α large does not impact classification accuracy for this
dataset, implying that tuning α is simple for this dataset.

a dataset of 864, 154 training examples with a class imbal-
ance of 14 : 86 of positive to negative COVID cases.

Feature Type

Age Categorical
Gender Categorical
LossOfSmellTaste Binary
ShortBreath Binary
Aches Binary
Tired Binary
Cough Binary
Fever Binary

Table 1: Top 8 features of the US COVID-19 survey
dataset (Salomon et al., 2021), selected via the largest odds
ratios on the validation set.

In Figure 8, we compare the model parameters learned by
the margin-based α-loss on noisy data with those of the
α = 1 (logistic regression) trained on clean data, which
is a calibrated model (Tu, 1996); we are interested in the
utility of α > 1 to “give up” on the noisy training data
and recover the clean model parameters. We see that tun-
ing α > 1 gives gains for both non-zero noise levels, but
there is a clear tradeoff with optimization complexity; this
is indicated by the widening confidence intervals as α in-
creases (Sypherd et al., 2020), which could be due to the
COVID-19 survey data being non-realizable and highly im-
balanced. However, we note that reduced MSE for α > 1
directly translates to gains on test-time accuracy; in Fig-
ure 30 in Appendix B we show that the sensitivity of the
model increases with increasing α.
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Figure 7: MSE of Bayes optimal line and the parameters
learned by α-loss, on a 2D GMM with 86 : 14 class imbal-
ance and varying label noise levels. We see that α > 1 is
able to more closely approximate the clean parameters than
α ≤ 1, and the MSE is fairly flat in the large α regime, in-
dicating that it is not difficult to tune α. Note that the 95%
confidence intervals grow wider for larger α, indicative of
the optimization/robustness tradeoff (Sypherd et al., 2020).

6 CONCLUSION

In this work, we have presented results indicating that the
margin-based α-loss is able to “give up” on noisy train-
ing data and robustly train simple models. For boosting,
we have shown, theoretically and experimentally, how tun-
ing α > 1 can address the negative result of Long and
Servedio (2008), in the process presenting a novel robust
boosting algorithm called AdaBoost.α, which may be of
independent interest. For linear models, we have also pre-
sented theoretical and experimental results, notably show-
ing robustness for a highly imbalanced COVID-19 survey
dataset (Salomon et al., 2021). Additionally, we have pre-
sented straightforward tuning characteristics for α in both
settings. Lastly, regarding societal impacts, we argue that
it is important to consider simple models, since they are
more interpretable and have reduced energy cost; we have
shown for multiple relevant domains that one can robustly
train simple models with a single α hyperparameter.

Acknowledgements

We thank the anonymous reviewers for their comments,
and Monica Welfert at Arizona State University for her
contributions to the preliminary code. This work is sup-
ported in part by NSF grants SCH-2205080, CIF-1901243,
CIF-2134256, CIF-2007688, CIF-1815361, a Google AI
for Social Good grant, and an Office of Naval Research
grant N00014-21-1-2615. This research is based on survey
results from Carnegie Mellon University’s Delphi Group.

Figure 8: A US COVID-19 survey dataset (Salomon et al.,
2021), plotting MSE of logistic regression (α = 1) base-
line parameters on clean data and model parameters learned
using α-loss on noisy data vs. α. For non-zero noise the
MSE is minimized for α > 1, but some care is required
in increasing α ≫ 1 as the confidence intervals widen,
likely due to this being non-realizable and highly imbal-
anced data. Also, note that we do not consider noise be-
yond 15% because of stratification, i.e., higher noise would
completely overwhelm the class imbalance.
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Appendices
A Further Theoretical Results, Commentary, and Proofs

Classification-Calibration Regarding the statistical efficacy of l̃α, Sypherd et al. (2022a) showed that the margin-based
α-loss is classification-calibrated for all α ∈ (0,∞], which is a necessary minimum condition for a “good” margin-
based loss function to satisfy. In words, a margin-based loss function is classification-calibrated if for each feature vector,
the minimizer of its conditional risk agrees in sign with the Bayes optimal predictor; this is a pointwise form of Fisher
consistency from the perspective of classification (Lin, 2004; Bartlett et al., 2006).

Lemma 1. For α ∈ (0,∞], the first derivative of l̃α with respect to the margin is given by

l̃α
′
(z) :=

d

dz
l̃α(z) = −σ′(z)σ(z)−

1
α , (20)

its second derivative is given by

l̃α
′′
(z) :=

d2

dz2
l̃α(z) =

ez (αez − α+ 1)

α(e−z + 1)−
1
α (ez + 1)3

, (21)

and its third derivative is given by

l̃α
′′′
(z) :=

d3

dz3
l̃α(z) =

−e2z + 4ez − 1− 3ez−2
α − 1

α2

e−z (1 + e−z)
− 1

α (ez + 1)4
. (22)

Discussion of Algorithm 1 The weighting used for the weak learner in Algorithm 1, namely that θt = 1
2 log

(
1−ϵt
ϵt

)
, is

the expression commonly used in vanilla AdaBoost (α = 1/2 for AdaBoost.α) (Schapire and Freund, 2013). However,
there are several other possibilities of θt for AdaBoost.α, due to its interpolating characteristics. One possibility is to use
θt = α log

(
1−ϵt
ϵt

)
, for α ∈ (0,∞], which is the optimal classification function of the margin-based α-loss (Sypherd et al.,

2022a). Another possibility is to use a Wolfe line search (Telgarsky, 2013). Consideration of the weighting of the weak
learners, and the ensuing convergence (and consistency) characteristics for Algorithm 1, is left for future work.

A.1 Proof of Theorem 1

The strategy of the proof is as follows:

1. First, we quantify what a perfect classification solution on the Long-Servedio dataset looks like, namely, inequal-
ity requirements involving θ1 and θ2 derived from the interaction of the “penalizers”, “puller”, and “large margin”
examples and the linear hypothesis class.

2. Next, we invoke the pathological result of (Long and Servedio, 2008), which yields a “bad” margin γ for any noise
level and the margin-based α-loss with α ≤ 1 (i.e., convex losses as articulated in Proposition 1).

3. Then, we reduce the first order equation of the margin-based α-loss evaluated at the four examples over the linear
weights for α ∈ (1,∞), and through a cancellation yield an equation which has a function of θ1 on the LHS and a
similar function of both θ1 and θ2 on the RHS, i.e., an asymmetric equation not allowing full analytical solution but
allowing reasoning about possible solutions.

4. Finally, using continuity arguments exploiting the giving up properties of the quasi-convex margin-based α-losses
for α ∈ (1,∞), we guarantee the existence of a solution (θ∗1 , θ

∗
2) with perfect classification accuracy on the clean

Long-Servedio dataset under the given pathological margin γ.

By the construction of the hypothesis class (Long and Servedio, 2008), namely that H = {h1(x) = x1, h2(x) = x2},
notice that the classification lines (constructed by the boosting algorithm in this pathological example) are given by θ1x1+
θ2x2 = 0 and must pass through the origin. Rewriting this classification line, we have that x2 = − θ1

θ2
x1. Reasoning

about perfect classification weights (θ∗1 , θ
∗
2), notice (see Figure 3) that the “large margin” example forces θ∗1 > 0. Further,
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(a) α = 1.1 classification line. (b) α = 1.8 classification line.

(c) α = 2 classification line. (d) α = 10 classification line.

Figure 9: Companion figure of Figure 3 where N = 2 (p = 1/3) and γ = 1/20 for α ∈ {1.1, 1.8, 2, 10}.

reasoning about the “penalizers”, we find that we require θ∗1 > θ∗2 , and reasoning about the “puller”, we also find that we
require θ∗1 > −5θ∗2 . Thus, perfect classification weights on the Long-Servedio dataset must satisfy all of the following:

θ∗1 > 0 and θ∗1 > θ∗2 and θ∗1 > −5θ∗2 . (23)

We now examine the solutions to the first-order equation for α ∈ (0,∞].

As in (Long and Servedio, 2008), let 1 < N < ∞ be the noise parameter such that the noise rate p = 1
N+1 , and hence

1 − p = N
N+1 . Under the Long-Servedio setup with the margin-based α-loss (and recalling that all four examples have

classification label y = 1), we have that

Rp
α(θ1, θ2) =

1

4

∑
x∈S

[
(1− p)l̃α(θ1x1 + θ2x2) + pl̃α(−θ1x1 − θ2x2)

]
. (24)

It is clear that minimizing 4(N +1)Rp
α is the same as minimizing Rp

α so we shall henceforth work with 4(N +1)Rp
α since

it gives rise to cleaner expressions. We have that

4(N + 1)Rp
α(θ1, θ2) =

∑
x∈S

[Nl̃α(θ1x1 + θ2x2) + l̃α(−θ1x1 − θ2x2)] (25)

= Nl̃α(θ1) + l̃α(−θ1) + 2Nl̃α(θ1γ − θ2γ) + 2l̃α(−θ1γ + θ2γ)

+Nl̃α(θ1γ + 5θ2γ) + l̃α(−θ1γ − 5θ2γ). (26)

See Figure 10 for a visualization of (26).
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(a) α = 1 Optimization Landscape. (b) α = 1.1 Optimization Landscape.

(c) α = 3 Optimization Landscape. (d) α = 10 Optimization Landscape.

Figure 10: Plots of optimization landscapes on the Long-Servedio dataset, i.e. (26), for α ∈ {1, 1.1, 3, 10}. Aligning
with Figure 3, N = 2 and γ = 1/20. For α = 1, the landscape is convex, which was formally proved (for any distribu-
tion) in (Sypherd et al., 2020). For α = 1.1, the landscape is non-convex, but not too much, which was also quantified
in (Sypherd et al., 2020). For α = 3, the landscape is more non-convex, and notice that the quality of the solutions (in the
sense of (23)) is significantly better for α = 3. For α = 10, the landscape strongly resembles the α = 3, but is “flatter”.

Again following notation in (Long and Servedio, 2008), let Pα
1 (θ1, θ2) and Pα

2 (θ1, θ2) be defined as follows:

Pα
1 (θ1, θ2) :=

∂

∂θ1
4(N + 1)Rp

α(θ1, θ2) and Pα
2 (θ1, θ2) :=

∂

∂θ2
4(N + 1)Rp

α(θ1, θ2). (27)

Thus, differentiating (26) by θ1 and θ2 respectively, we have

Pα
1 (θ1, θ2) = Nl̃α

′
(θ1)− l̃α

′
(−θ1) + 2γNl̃α

′
(θ1γ − θ2γ)

− 2γl̃α
′
(−θ1γ + θ2γ) +Nγl̃α

′
(θ1γ + 5θ2γ)− γl̃α

′
(−θ1γ − 5θ2γ), (28)

and

Pα
2 (θ1, θ2) = −2γNl̃α

′
(θ1γ − θ2γ) + 2γl̃α

′
(−θ1γ + θ2γ) + 5γNl̃α

′
(θ1γ + 5θ2γ)− 5γl̃α

′
(−θ1γ − 5θ2γ). (29)

In order to reason about the quality of the solutions to (26) for α ∈ (1,∞), we want to find where Pα
1 (θ1, θ2) =

Pα
2 (θ1, θ2) = 0 for the margin-based α-loss. So, rewriting Pα

1 (θ1, θ2) = 0, we obtain

Nl̃α
′
(θ1) + 2γNl̃α

′
(θ1γ − θ2γ) +Nγl̃α

′
(θ1γ + 5θ2γ)

= l̃α
′
(−θ1) + 2γl̃α

′
(−θ1γ + θ2γ) + γl̃α

′
(−θ1γ − 5θ2γ), (30)
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(a) Bα
N (x) for α = 1. (b) Bα

N (x) for α = 3.

Figure 11: Plots of Bα
N (x) for α = 1 and 3, where N = 2. For α = 1, notice that Bα

N (x) is non-decreasing in x. On the
other hand, notice that for α = 3, Bα

N (x) is not non-decreasing. One can also see other properties of Bα
N in figure (b) as

articulated in Lemma 2.

and rewriting Pα
2 (θ1, θ2) = 0, we obtain

2γl̃α
′
(−θ1γ + θ2γ) + 5γNl̃α

′
(θ1γ + 5θ2γ) = 2γNl̃α

′
(θ1γ − θ2γ) + 5γl̃α

′
(−θ1γ − 5θ2γ). (31)

Substituting (31) into (30), we are able to cancel a term and recover

Nl̃α
′
(θ1)− l̃α

′
(−θ1) = 6γl̃α

′
(−θ1γ − 5θ2γ)− 6Nγl̃α

′
(θ1γ + 5θ2γ). (32)

Rewriting, we obtain

Nl̃α
′
(θ1)− l̃α

′
(−θ1) = −6γ

[
Nl̃α

′
(γ(θ1 + 5θ2))− l̃α

′
(−γ(θ1 + 5θ2))

]
. (33)

Notice that Bα
N (x) = Nl̃α

′
(x)− l̃α

′
(−x), with x ∈ R, is common on both sides. From Lemma 1, we have that l̃α

′
(x) :=

−σ′(x)σ(x)−1/α for α ∈ (0,∞]. Plugging this into Bα
N (and using the fact that σ′(x) is an even function), we have that

Bα
N (x) = N

(
−σ′(x)σ(x)−1/α

)
−
(
−σ′(−x)σ(−x)−1/α

)
(34)

= σ′(x)σ(−x)−1/α −Nσ′(x)σ(x)−1/α (35)

= σ′(x)
(
σ(−x)−1/α −Nσ(x)−1/α

)
. (36)

Using this, we can rewrite (33) as

Bα
N (θ1) = −6γBα

N (γ(θ1 + 5θ2)), (37)

which is equivalent to

σ′(θ1)
(
σ(−θ1)

−1/α −Nσ(θ1)
−1/α

)
= −6γσ′(γ(θ1 + 5θ2))

(
σ(−γ(θ1 + 5θ2))

−1/α −Nσ(γ(θ1 + 5θ2))
−1/α

)
,

(38)

and both quantify solutions (θ∗1 , θ
∗
2). Notice that it is unfortunately not possible to analytically reduce (38) for general

α ∈ (1,∞) because it is a difference of α power expressions, i.e., a transcendental equation. However, while we cannot
analytically recover solutions (θ∗1 , θ

∗
2) for α ∈ (1,∞), we can reason about the solutions themselves (from the perspective

of (23)), because we can utilize nice properties of Bα
N . For instance, one key thing to notice in (37) is that Bα

N on the LHS
depends only on one component of the solution vector, namely θ1, whereas the RHS depends on both components of the
solution vector (θ1, θ2).

To this end, we take a detour from the main thread to aggregate some nice properties of Bα
N for α > 1. See Figure 11 for

a plot of Bα
N .
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Lemma 2. Consider for α ∈ (0,∞] and 1 < N < ∞,

Bα
N (x) := σ′(x)

(
σ(−x)−1/α −Nσ(x)−1/α

)
, (39)

where x ∈ R. The following are properties of Bα
N :

1. For α ≤ 1, Bα
N (x) is non-decreasing in x.

2. For α > 1, Bα
N (x) is not non-decreasing in x.

3. Note that lim
α→∞

Bα
N (x) = σ′(x)(1−N).

4. For α > 1, lim
x→+∞

Bα
N (x) → 0+ and lim

x→−∞
Bα

N (x) → 0−.

5. For α > 1, the resulting limits of the previous property are reversed for −Bα
N .

6. For α > 1, Bα
N (x) > 0 if and only if x > α lnN .

(a) Plot of LHS (green) and RHS (red) of (40) for α = 1. (b) Plot of LHS (green) and RHS (red) of (40) for α = 1.1.

(c) Plot of LHS (green) and RHS (red) of (40) for α = 3. (d) Plot of LHS (green) and RHS (red) of (40) for α = 10.

Figure 12: Plots of LHS (green) and RHS (red) of (40) for α ∈ {1, 1.1, 3, 10}, and N = 2 and γ = 1/20. The intersections
of the surfaces indicate solutions of (40). One can see that the solutions for α = 1 are not “good” in the sense of (23)
because θ1 is small and fixed; this phenomenon was proved by (Long and Servedio, 2008) since α = 1 is a convex loss. For
α = 1.1, one can see the resemblance of α = 1 and α = 3, and the fact that “good” solutions are starting to accumulate.
For α = 3, there are many solutions with diverse (θ1, θ2) values, since the loss is no longer convex. “Good” solutions for
α = 3 can be seen where θ1 is positive and large with respect to θ2, i.e., in the middle/right side of the plot. For α = 10, one
can see that the “good” solutions have been pushed out further in the parameter space and the two surfaces are starting to
separate (reflecting the fact that α = ∞ has no solutions). Viewing all four plots together, one observes smooth transitions
in α, indicating that finding a good solution is not difficult.



Smoothly Giving up: Robustness for Simple Models

The proof of the first property is obtained by invoking one of the results of Long and Servedio (2008) for convex,
classification-calibrated loss functions. The remaining properties can be readily shown using standard techniques.

With these nice properties of Bα
N in hand, we now return to the main thread. Using the properties in Lemma 2, we want to

reason about the solutions of (37), i.e.,

Bα
N (θ1) = −6γBα

N (γ(θ1 + 5θ2)), (40)

as a function of α ∈ (0,∞]. From Propositions 1 and (Sypherd et al., 2022a), we know that l̃α is classification-calibrated
for all α ∈ (0,∞], convex for α ≤ 1, and quasi-convex for α > 1. Thus, via (Long and Servedio, 2008), for each
α̂ ≤ 1, there exists some 0 < γα̂ < 1/6 such that there exists a solution (θα̂1 , θ

α̂
2 ) of (40) which has classification accuracy

of 0.5 (fair coin) on the Long-Servedio dataset. Without loss of generality, fix α̂ ≤ 1 and its associated pathological
0 < γα̂ < 1/6.

For α = ∞, notice that there are no solutions to (40) since via the third property in Lemma 2, (40) reduces to

σ′(θ1)(1−N) = −6γα̂σ
′(γα̂(θ1 + 5θ2))(1−N), (41)

which is not satisfied because σ′(θ1)(1−N) < 0 and −6γα̂σ
′(γα̂(θ1 + 5θ2))(1−N) > 0 for all (θ1, θ2); intuitively, the

LHS and RHS in (41) look like mirrored σ′(x) type functions.

Now, we consider α ∈ (1,∞) in (40), which is the key region of α for the proof. Examining the LHS of (40), i.e. Bα
N (θ1),

we note from the fourth property of Lemma 2 that lim
θ1→+∞

Bα
N (θ1) → 0+. Furthermore, we note via the sixth property in

Lemma 2 that Bα
N (θ1) > 0 if and only if θ1 > α lnN . So, tuning α ∈ (1,∞) greater moves the crossover (from negative

to positive) of Bα
N further in θ1.

We now examine the RHS of (40), i.e., −6γα̂B
α
N (γα̂(θ1 + 5θ2)). Set θ2 = 0, so we reduce −6γα̂B

α
N (γα̂(θ1 + 5θ2)) to

−6γα̂B
α
N (γα̂θ1). From the fifth property of Lemma 2, we have that lim

θ1→∞
−6γα̂B

α
N (γα̂θ1) → 0−. Furthermore, we note

via the sixth property in Lemma 2 that −6γα̂B
α
N (γα̂θ1) < 0 if and only if θ1 > α lnN

γα̂
. So, tuning α ∈ (1,∞) greater

moves the crossover (from positive to negative) of −6γα̂B
α
N (γα̂θ1) further in θ1.

Taking the limit and crossover behaviors in θ1 of Bα
N (θ1) (the LHS of (40)) and −6γα̂B

α
N (γα̂θ1) (the reduced RHS of (40))

together, we have by continuity that there must exist some θ̃1 > 0 which satisfies

Bα
N (θ̃1) = −6γα̂B

α
N (γα̂θ̃1), (42)

for each α ∈ (1,∞).

Figure 13: A plot of LHS (green) and RHS (red) of (42) for α = 3, where N = 2, γ = 1/20. Notice that the intersection
point θ̃1 (dotted line) is very close to the crossover point α lnN

γα̂
≈ 3×0.69

1/20 ≈ 41.59, and also notice that this solution nicely
coincides with the grid-search solution presented in Figure 3.
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Furthermore, the choice of α ∈ (1,∞) directly influences the magnitude of θ̃1 > 0, with larger α increasing the value of
θ̃1 because of the crossover points, particularly that we require θ̃1 > α lnN

γα̂
, which is more restrictive than the requirement

that θ̃1 > α lnN , since 0 < γα̂ < 1/6, i.e., Bα
N is more “expansive” when its argument is multiplied by γα̂ < 1/6. See

Figure 13 for a plot.

Therefore, for each α ∈ (1,∞), there exists a solution (θα1 , θ
α
2 ) to (40), where θα1 = θ̃1 > 0 (indeed, we have that

θα1 = O
(
αγ−1

α̂ ln
(
p−1 − 1

))
) and θα2 = 0, which is a good solution in the sense of (23) and thus has perfect classification

accuracy on the clean LS dataset.

Next, while not necessary for the proof of Theorem 1, we also argue for the existence of other optima near (θα1 , θ
α
2 ). Re-

considering the full (with θ2 included) expression, −6γα̂B
α
N (γα̂(θ1 + 5θ2)) in (40), we take α ∈ (1,∞) large enough

in (42) and thus θ̃1 > α lnN
γα̂

is large enough such that Bα
N (θ̃1) ≈ 0 and is locally very “flat” (as given by the third

property in Lemma 2). Hence, perturbing θ̃1 slightly induces an extremely slight movement in Bα
N (θ̃1). Now, consid-

ering −6γα̂B
α
N (γα̂(θ̃1 + 5θ2)), we fix θ∗2 to be very small (either positive or negative). We then “wiggle” θ̃1 slightly to

(potentially) recover a solution θ∗1 to

Bα
N (θ∗1) = −6γα̂B

α
N (γα̂(θ

∗
1 + 5θ∗2)), (43)

which (might) exist by continuity. See Figure 14 for a plot; intuitively, the fact that the LHS and RHS of (42) intersect, not
merely “touch”, suggests the existence of (θ∗1 , θ

∗
2), indeed a “strip” of good solutions.

(a) Rotated version of Figure 12a. (b) Rotated version of Figure 12b.

(c) Rotated version of Figure 12c. (d) Rotated version of Figure 12d.

Figure 14: Companion figures of Figure 12 for α ∈ {1, 1.1, 3, 10}, and N = 2 and γ = 1/20. The contours indicate
solutions of (40). In Figure 14c, one can see a contour of “good” LS solutions near where θ1 ≈ 41.59 and θ2 is very small.
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Figure 15: Companion figure of Figure 14d, again for α = 10, where the parameter space has been increased. One can
again see “good” LS solutions for large θ1 and small θ2. This is indicative of a trade off between the value of α and the
range of the parameter space for the LS dataset.

A.2 Proof of Theorem 2

In this section, we provide the proof of Theorem 2. First, however, we provide lemmas useful in the proof of Theorem 2,
which indicate useful bounds for α = 1 and ∞, and their respective proofs.

Lemma 3. For all z ∈ R, we have that ∣∣∣∣ d2dz2
l̃1(z)

∣∣∣∣ ≥ ∣∣∣∣ d2dz2
l̃∞(z)

∣∣∣∣ , (44)

Proof. Examining
∣∣∣∣ d2dz2

l̃1(z)

∣∣∣∣ = ∣∣∣∣ d2dz2
l̃∞(z)

∣∣∣∣, we have that

∣∣∣∣ d2dz2
l̃1(z)

∣∣∣∣ = ∣∣∣∣ d2dz2
l̃∞(z)

∣∣∣∣ (45)∣∣∣∣ ez

(ez + 1)2

∣∣∣∣ = ∣∣∣∣ez(ez − 1)

(ez + 1)3

∣∣∣∣ (46)

ez =

∣∣∣∣ez(ez − 1)

ez + 1

∣∣∣∣ , (47)

however, there are no real solutions to this equation. Thus,
∣∣∣∣ d2dz2

l̃1(z)

∣∣∣∣ and
∣∣∣∣ d2dz2

l̃∞(z)

∣∣∣∣ do not intersect.

Considering the large z > 0 regime, we find that

ez ≥ ez − 1, (48)

for all z ∈ R, where we used the fact that lim
z→∞

ez(ez−1)
ez+1 = ez − 1. Thus, by the Intermediate Value Theorem, we have the

desired conclusion.

Lemma 4. For |z| > ln (2), we have that ∣∣∣∣ d3dz3
l̃∞(z)

∣∣∣∣ ≤ ∣∣∣∣ d3dz3
l̃1(z)

∣∣∣∣ . (49)



Tyler Sypherd, Nathan Stromberg, Richard Nock, Visar Berisha, Lalitha Sankar

Proof. Consider ∣∣∣∣ d3dz3
l̃1(z)

∣∣∣∣ = ∣∣∣∣ ez − e2z

(ez + 1)3

∣∣∣∣ (50)

and ∣∣∣∣ d3dz3
l̃∞(z)

∣∣∣∣ = ∣∣∣∣−e3z + 4e2z − ez

(ez + 1)4

∣∣∣∣ . (51)

Setting ∣∣∣∣ d3dz3
l̃1(z)

∣∣∣∣ = ∣∣∣∣ d3dz3
l̃∞(z)

∣∣∣∣ , (52)

after some algebra, we find that z∗ = ± ln (2). Furthermore, considering the large z > 0 regime, we find that∣∣∣∣ d3dz3
l̃∞(z)

∣∣∣∣ ?
≤
∣∣∣∣ d3dz3

l̃1(z)

∣∣∣∣ (53)∣∣∣∣−e3z + 4e2z − ez

(ez + 1)4

∣∣∣∣ ?
≤
∣∣∣∣ ez − e2z

(ez + 1)3

∣∣∣∣ (54)

e3z − 4e2z + ez

ez + 1

?
≤ e2z − ez (55)

e2z − 4ez ≤ e2z − ez, (56)

thus by the IVT and symmetry, we have the desired result.

With Lemmas 3 and 4 in hand, we now present the proof of Theorem 2.

Recall from (11) that for α ∈ (0,∞]

∇θ l̃
α(⟨Y X, θ⟩) = −σ(⟨Y X, θ⟩)1− 1

ασ(−⟨Y X, θ⟩)Y X = l̃α
′
(⟨Y X, θ⟩)Y X, (57)

since for each i ∈ [d],
∂

∂θi
l̃α(⟨Y X, θ⟩) = l̃α

′
(⟨Y X, θ⟩)Y Xi.

Hence, the gradient of the noisy α-risk from (12) is

∇θR
p
α(θ) = EX,Y

[
(1− p)∇θ l̃

α(⟨Y X, θ⟩) + p∇θ l̃
α(⟨−Y X, θ⟩)

]
(58)

= EX,Y

[(
(1− p)l̃α

′
(⟨Y X, θ⟩)− pl̃α

′
(⟨−Y X, θ⟩)

)
Y X

]
, (59)

where we expanded the expression for clarity. Notice that for α = 1 (from Lemma 1),

l̃1
′
(−z) = −l̃1

′
(z)− 1, (60)

namely that l̃1
′

is almost an odd function, and for α = ∞,

l̃∞
′
(−z) = l̃∞

′
(z), (61)

namely that l̃∞
′

is an even function.

Thus, we have by the definition of θ̂1 and θ̂∞ that for α = 1

0 = ∇θR
p
1(θ̂

1) = EX,Y

[(
(1− p)l̃1

′
(⟨Y X, θ̂1⟩)− pl̃1

′
(⟨−Y X, θ̂1⟩)

)
Y X

]
(62)

= (1− p)EX,Y

[
l̃1

′
(⟨Y X, θ̂1⟩)Y X

]
− pEX,Y

[
l̃1

′
(⟨−Y X, θ̂1⟩)Y X

]
(63)

= (1− p)EX,Y

[
l̃1

′
(⟨Y X, θ̂1⟩)Y X

]
− pEX,Y

[(
−l̃1

′
(⟨Y X, θ̂1⟩)− 1

)
Y X

]
(64)

= EX,Y

[
l̃1

′
(⟨Y X, θ̂1⟩)Y X

]
+ pEX,Y [Y X], (65)
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and for α = ∞

0 = ∇θR
p
∞(θ̂∞) = EX,Y

[(
(1− p)l̃∞

′
(⟨Y X, θ̂∞⟩)− pl̃∞

′
(⟨−Y X, θ̂∞⟩)

)
Y X

]
(66)

= (1− p)EX,Y

[
l̃∞

′
(⟨Y X, θ̂∞⟩)Y X

]
− pEX,Y

[
l̃∞

′
(⟨−Y X, θ̂∞⟩)Y X

]
(67)

= (1− 2p)EX,Y

[
l̃∞

′
(⟨Y X, θ̂∞⟩)Y X

]
. (68)

And, thus we have that for each i ∈ [d],

EX,Y

[
l̃1

′
(⟨Y X, θ̂1⟩)Y Xi

]
+ pEX,Y [Y Xi] = 0, (69)

and

EX,Y

[
l̃∞

′
(⟨Y X, θ̂∞⟩)Y Xi

]
= 0. (70)

In order to evaluate the efficacy of the gradient of the noisy α-risk at recovering any data generating vector θ∗ ∈ Bd(r), we
seek to upper bound ∥∇θR

p
1(θ

∗)∥∞ and ∥∇θR
p
∞(θ∗)∥∞. To this end, recall the Taylor-Lagrange equality (Kline, 1998)

for a twice continuously differentiable f : R → R,

f(b) = f(a) + (b− a)f ′(a) +
(b− a)2

2
f ′′(c), (71)

where c ∈ [a, b].

Let i ∈ [d] be arbitrary, but fixed. From (59) (and the reductions from (65) and (68)) we have that at θ∗ ∈ Bd(r)

∂

∂θi
Rp

1(θ
∗) = EX,Y

[
l̃1

′
(⟨Y X, θ∗⟩)Y Xi

]
+ pEX,Y [Y Xi], (72)

and

∂

∂θi
Rp

∞(θ∗) = (1− 2p)EX,Y

[
l̃∞

′
(⟨Y X, θ∗⟩)Y Xi

]
. (73)

Using the Taylor-Lagrange equality, we let f = l̃α
′

(where α = 1 or ∞ for simplicity for the time being), and thus we
have that for each (X,Y ) ∈ X × {−1,+1},

l̃α
′
(b(X,Y )) = l̃α

′
(a(X,Y )) + (b(X,Y ) − a(X,Y ))l̃

α′′
(a(X,Y )) +

(b(X,Y ) − a(X,Y ))
2

2
l̃α

′′′
(cα(X,Y )), (74)

where b(X,Y ) = ⟨Y X, θ∗⟩ and a(X,Y ) = ⟨Y X, θ̂α⟩, hence cα(X,Y ) ∈ [⟨Y X, θ̂α⟩, ⟨Y X, θ∗⟩]. Examining each of (72) (first
term) and (73) (without coefficient) with the Taylor-Lagrange equality, we have that

EX,Y

[
l̃α

′
(⟨Y X, θ∗⟩)Y Xi

]
= EX,Y

[(
l̃α

′
(a(X,Y )) + (b(X,Y ) − a(X,Y ))l̃

α′′
(a(X,Y )) +

(b(X,Y ) − a(X,Y ))
2

2
l̃α

′′′
(cα(X,Y ))

)
Y Xi

]
. (75)

Thus, for α = 1, we have that

∂

∂θi
Rp

1(θ
∗) = EX,Y

[
l̃1

′
(⟨Y X, θ∗⟩)Y Xi

]
+ pEX,Y [Y Xi] (76)

= pEX,Y [Y Xi]

+ EX,Y

[(
l̃1

′
(⟨Y X, θ̂1⟩) + (⟨Y X, θ∗⟩ − ⟨Y X, θ̂1⟩)l̃1

′′
(⟨Y X, θ̂1⟩) + (⟨Y X, θ∗⟩ − ⟨Y X, θ̂1⟩)2

2
l̃1

′′′
(c1(X,Y ))

)
Y Xi

]
,

(77)
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where c1(X,Y ) ∈ [⟨Y X, θ̂1⟩, ⟨Y X, θ∗⟩]. Noticing that EX,Y

[
l̃1

′
(⟨Y X, θ̂1⟩)Y Xi

]
+ pEX,Y [Y Xi] = 0, we thus obtain

∂

∂θi
Rp

1(θ
∗) = EX,Y

[(
(⟨Y X, θ∗⟩ − ⟨Y X, θ̂1⟩)l̃1

′′
(⟨Y X, θ̂1⟩) + (⟨Y X, θ∗⟩ − ⟨Y X, θ̂1⟩)2

2
l̃1

′′′
(c1(X,Y ))

)
Y Xi

]
. (78)

Using similar steps, we can also obtain

∂

∂θi
Rp

∞(θ∗)

= (1− 2p)EX,Y

[(
(⟨Y X, θ∗⟩ − ⟨Y X, θ̂∞⟩)l̃∞

′′
(⟨Y X, θ̂∞⟩) + (⟨Y X, θ∗⟩ − ⟨Y X, θ̂∞⟩)2

2
l̃∞

′′′
(c∞(X,Y ))

)
Y Xi

]
,

(79)

where c∞(X,Y ) ∈ [⟨Y X, θ̂∞⟩, ⟨Y X, θ∗⟩] and we note a difference between (78) and (79), i.e. the latter has the 1 − 2p
coefficient.

Now, we consider
∣∣∣∣ ∂

∂θi
Rp

1(θ
∗)

∣∣∣∣ and seek an upperbound. We have that from (78)

∣∣∣∣ ∂

∂θi
Rp

1(θ
∗)

∣∣∣∣ =
∣∣∣∣∣EX,Y

[(
(⟨Y X, θ∗⟩ − ⟨Y X, θ̂1⟩)l̃1

′′
(⟨Y X, θ̂1⟩) + (⟨Y X, θ∗⟩ − ⟨Y X, θ̂1⟩)2

2
l̃1

′′′
(c1(X,Y ))

)
Y Xi

]∣∣∣∣∣
(80)

≤ EX,Y

[∣∣∣∣∣
(
(⟨Y X, θ∗⟩ − ⟨Y X, θ̂1⟩)l̃1

′′
(⟨Y X, θ̂1⟩) + (⟨Y X, θ∗⟩ − ⟨Y X, θ̂1⟩)2

2
l̃1

′′′
(c1(X,Y ))

)
Y Xi

∣∣∣∣∣
]
(81)

= EX,Y

[
|Xi|

∣∣∣∣∣(⟨Y X, θ∗⟩ − ⟨Y X, θ̂1⟩)l̃1
′′
(⟨Y X, θ̂1⟩) + (⟨Y X, θ∗⟩ − ⟨Y X, θ̂1⟩)2

2
l̃1

′′′
(c1(X,Y ))

∣∣∣∣∣
]

(82)

≤ EX,Y

[
|Xi|

(∣∣∣(⟨Y X, θ∗⟩ − ⟨Y X, θ̂1⟩)l̃1
′′
(⟨Y X, θ̂1⟩)

∣∣∣+ ∣∣∣∣∣ (⟨Y X, θ∗⟩ − ⟨Y X, θ̂1⟩)2

2
l̃1

′′′
(c1(X,Y ))

∣∣∣∣∣
)]

,

(83)

where we used Jensen’s inequality via the absolute value, the triangle inequality, and the fact that |ab| = |a|·|b|. Continuing,

EX,Y

[
|Xi|

(∣∣∣(⟨Y X, θ∗⟩ − ⟨Y X, θ̂1⟩)l̃1
′′
(⟨Y X, θ̂1⟩)

∣∣∣+ ∣∣∣∣∣ (⟨Y X, θ∗⟩ − ⟨Y X, θ̂1⟩)2

2
l̃1

′′′
(c1(X,Y ))

∣∣∣∣∣
)]

(84)

= EX,Y

[
|Xi|

(∣∣∣⟨Y X, θ∗ − θ̂1⟩
∣∣∣ ∣∣∣l̃1′′(⟨Y X, θ̂1⟩)

∣∣∣+ ⟨Y X, θ∗ − θ̂1⟩2

2

∣∣∣l̃1′′′(c1(X,Y ))
∣∣∣)] (85)

≤ EX,Y

|Xi|

∥Y X∥
∥∥∥θ∗ − θ̂1

∥∥∥ ∣∣∣l̃1′′(⟨Y X, θ̂1⟩)
∣∣∣+ ∥Y X∥2

∥∥∥θ∗ − θ̂1
∥∥∥2

2

∣∣∣l̃1′′′(c1(X,Y ))
∣∣∣

 , (86)

where we used the Cauchy-Schwarz inequality on both inner products. Next, we use the observation that X ∈ [0, 1]d, and
thus ∥X∥ ≤

√
d, and that θ∗ − θ ∈ Bd(2r), for all θ ∈ Bd(r). Thus, we have that

EX,Y

|Xi|

∥Y X∥
∥∥∥θ∗ − θ̂1

∥∥∥ ∣∣∣l̃1′′(⟨Y X, θ̂1⟩)
∣∣∣+ ∥Y X∥2

∥∥∥θ∗ − θ̂1
∥∥∥2

2

∣∣∣l̃1′′′(c1(X,Y ))
∣∣∣

 (87)

≤ EX,Y

[√
d2r

∣∣∣l̃1′′(⟨Y X, θ̂1⟩)
∣∣∣+ 4dr2

2

∣∣∣l̃1′′′(c1(X,Y ))
∣∣∣] (88)

= 2d1/2rEX,Y

[∣∣∣l̃1′′(⟨Y X, θ̂1⟩)
∣∣∣]+ 2dr2EX,Y

[∣∣∣l̃1′′′(c1(X,Y ))
∣∣∣] . (89)
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Thus, we obtain that ∣∣∣∣ ∂

∂θi
Rp

1(θ
∗)

∣∣∣∣ ≤ 2d1/2rEX,Y

[∣∣∣l̃1′′(⟨Y X, θ̂1⟩)
∣∣∣]+ 2dr2EX,Y

[∣∣∣l̃1′′′(c1(X,Y ))
∣∣∣] . (90)

For α = ∞, the exact same steps go through, so we also have that∣∣∣∣ ∂

∂θi
Rp

∞(θ∗)

∣∣∣∣ ≤ (1− 2p)
(
2d1/2rEX,Y

[∣∣∣l̃∞′′
(⟨Y X, θ̂∞⟩)

∣∣∣]+ 2dr2EX,Y

[∣∣∣l̃∞′′′
(c∞(X,Y ))

∣∣∣]) . (91)

Considering EX,Y

[∣∣∣l̃1′′(⟨Y X, θ̂1⟩)
∣∣∣] in (90), we let

z∗1 = argmax
z∈{⟨yx,θ̂1⟩|(x,y)∈X×{−1,+1}}

∣∣∣l̃1′′(z)∣∣∣ , (92)

and we thus obtain EX,Y

[∣∣∣l̃1′′(⟨Y X, θ̂1⟩)
∣∣∣] ≤ ∣∣∣l̃1′′(z∗1)∣∣∣, where we note that z∗1 > ln (2 +

√
3) by assumption. Similarly,

considering EX,Y

[∣∣∣l̃∞′′
(⟨Y X, θ̂∞⟩)

∣∣∣] in (91), we let

z∗∞ = argmax
z∈{⟨yx,θ̂∞⟩|(x,y)∈X×{−1,+1}}

∣∣∣l̃∞′′
(z)
∣∣∣ , (93)

and we thus obtain EX,Y

[∣∣∣l̃∞′′
(⟨Y X, θ̂∞⟩)

∣∣∣] ≤ ∣∣∣l̃∞′′
(z∗∞)

∣∣∣, where z∗∞ ≥ z∗1 > ln (2 +
√
3) again by assumption.

Indeed, since
∣∣∣l̃1′′′(z)∣∣∣ and

∣∣∣l̃∞′′′
(z)
∣∣∣ are monotonically decreasing for z > ln (2 +

√
3) we also have that

EX,Y

[∣∣∣l̃1′′′(c1(X,Y ))
∣∣∣] ≤ ∣∣∣l̃1′′′(z∗1)∣∣∣ , (94)

and

EX,Y

[∣∣∣l̃∞′′′
(c∞(X,Y ))

∣∣∣] ≤ ∣∣∣l̃∞′′′
(z∗∞)

∣∣∣ . (95)

Next, we invoke Lemma 3, i.e., that for all z ∈ R,∣∣∣∣ d2dz2
l̃1(z)

∣∣∣∣ ≥ ∣∣∣∣ d2dz2
l̃∞(z)

∣∣∣∣ , (96)

and Lemma 4, i.e., that for z > ln 2, ∣∣∣∣ d3dz3
l̃∞(z)

∣∣∣∣ ≤ ∣∣∣∣ d3dz3
l̃1(z)

∣∣∣∣ . (97)

Thus, we have that (also by monotonically decreasing)∣∣∣l̃∞′′
(z∗∞)

∣∣∣ ≤ ∣∣∣l̃1′′(z∗1)∣∣∣ , (98)

and ∣∣∣l̃∞′′′
(z∗∞)

∣∣∣ ≤ ∣∣∣l̃1′′′(z∗1)∣∣∣ . (99)

Hence, since the bounds on (90) and (91) hold for all i ∈ [d], we obtain the desired result.
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A.3 Proof of Theorem 3

The strategy of the proof is to upperbound and lowerbound ∥∇θR
p
α(θ) − E[X [1]]∥. For the lowerbound, we use the

reverse triangle inequality. Combining the upper and lowerbounds, we then rewrite the bounded expressions to induce a
lowerbound on ∥∇θR

p
α(θ)∥ itself. For notational convenience, we used γ = Cp,r

√
d,α in the main body.

Now, for each y ∈ {−1, 1}, let X [y] denote the random variable having the distribution of X conditioned on Y = y. We
further assume that X [1] d

= −X [−1], E[X [1]] ̸= 0, namely, a skew-symmetric distribution. Examining the gradient of the
noisy α-risk (under the skew-symmetric distribution), we have that (P1 = P[Y = 1])

∇θR
p
α(θ) = EX,Y

[(
pY gθ(−Y X)1−1/αgθ(Y X)− (1− p)Y gθ(Y X)1−1/αgθ(−Y X)

)
X

]
(100)

= P1EX[1]

[(
pgθ(−X [1])1−1/αgθ(X

[1])− (1− p)gθ(X
[1])1−1/αgθ(−X [1])

)
X [1]

]
+ P−1EX[−1]

[(
−pgθ(X

[−1])1−
1
α gθ(−X [−1]) + (1− p)gθ(−X [−1])1−

1
α gθ(X

[−1])
)
X [−1]

]
(101)

= EX[1]

[(
pgθ(−X [1])1−1/αgθ(X

[1])− (1− p)gθ(X
[1])1−1/αgθ(−X [1])

)
X [1]

]
. (102)

First considering the upperbound on ∥∇θR
p
α(θ)− E[X [1]]∥, we have that

∥EX[1]

[(
pgθ(−X [1])1−1/αgθ(X

[1])− (1− p)gθ(X
[1])1−1/αgθ(−X [1])

)
X [1]

]
− E[X [1]]∥ (103)

= ∥EX[1]

[(
pgθ(−X [1])1−1/αgθ(X

[1])− (1− p)gθ(X
[1])1−1/αgθ(−X [1])− 1

)
X [1]

]
∥ (104)

= ∥EX[1]

[(
pgθ(−X [1])1−1/αgθ(X

[1])− p− (1− p)gθ(X
[1])1−1/αgθ(−X [1])− (1− p)

)
X [1]

]
∥ (105)

= ∥EX[1]

[(
p
(
gθ(−X [1])1−1/αgθ(X

[1])− 1
)
− (1− p)

(
gθ(X

[1])1−1/αgθ(−X [1])− 1
))

X [1]
]
∥ (106)

≤ EX[1]

[∣∣∣p(gθ(−X [1])1−1/αgθ(X
[1])− 1

)
− (1− p)

(
gθ(X

[1])1−1/αgθ(−X [1])− 1
)∣∣∣ ∥X [1]∥

]
, (107)

where we used Jensen’s inequality due to the convexity of the norm.

We now consider the term in absolute value above, which we rewrite for simplicity as

fα,p(x) := p
(
σ(−x)1−

1
ασ(x)− 1

)
− (1− p)

(
σ(x)1−

1
ασ(−x)− 1

)
. (108)

We examine

∂

∂α
fα,p(x) = (1− p)

σ(x)1−
1
α log (e−x + 1)

(ex + 1)α2
− p

σ(−x)1−
1
α log (ex + 1)

(e−x + 1)α2
, (109)

which follows from the fact that

∂

∂α
σ(x)1−

1
ασ(−x) =

σ(x)1−
1
α log (σ(x))

(ex + 1)α2
. (110)

Considering x > 0 and 0 < p < 1/2, one can show that

∂

∂α
fα,p(x) > 0 (111)

is equivalent to (
1

p
− 1

)
> e

x
α

log (ex + 1)

log (e−x + 1)
, (112)

and it can be shown that the term on the right-hand-side is monotonically increasing in x > 0 for α ∈ [1,∞]. Hence
choosing x > 0 (i.e., r > 0) small enough ensures that fα,p(x) is monotonically increasing in α ∈ [1,∞]. Furthermore,



Smoothly Giving up: Robustness for Simple Models

since
∂

∂x
fα,p(x) > 0 for x > 0, p < 1/2, and α ∈ [1,∞], and X ∈ [0, 1]d, θ ∈ Bd(r), we have by the Cauchy-Schwarz

inequality (i.e., ⟨θ,X⟩ ≤ r
√
d) that

p
(
gθ(−X [1])1−1/αgθ(X

[1])− 1
)
− (1− p)

(
gθ(X

[1])1−1/αgθ(−X [1])− 1
)

(113)

≤ p
(
σ(−r

√
d)1−

1
ασ(r

√
d)− 1

)
− (1− p)

(
σ(r

√
d)1−

1
ασ(−r

√
d)− 1

)
=: Cp,r

√
d,α. (114)

Note that Cp,r
√
d,1 := σ(r

√
d)− p > 0 (since r

√
d > 0 and p < 1/2), and Cp,r

√
d,∞ := (1− 2p)(1− σ′(r

√
d)), and by

the restriction on r > 0 (112), we have that for α ∈ (1,∞)

0 < Cp,r
√
d,1 ≤ Cp,r

√
d,α ≤ Cp,r

√
d,∞. (115)

Thus, considering the upperbound on ∥∇θR
p
α(θ)− E[X [1]]∥ in (107), we have that

∥∇θR
p
α(θ)− E[X [1]]∥ ≤ Cp,r

√
d,αEX[1] [∥X [1]∥], (116)

where Cp,r
√
d,α is given in (114).

Now, considering a lowerbound on ∥∇θR
p
α(θ)− E[X [1]]∥, via the reverse triangle inequality we have that

∥∇θR
p
α(θ)− E[X [1]]∥ ≥ ∥E[X [1]]∥ − ∥∇θR

p
α(θ)∥. (117)

Combining this with our derived upperbound (116), we have that

Cp,r
√
d,αE[∥X

[1]∥] ≥ ∥E[X [1]]∥ − ∥∇θR
p
α(θ)∥. (118)

Rewriting, we have that

∥∇θR
p
α(θ)∥ ≥ ∥E[X [1]]∥ − Cp,r

√
d,αE[∥X

[1]∥]. (119)

Using our observation earlier regarding the monotonically increasing property of Cp,r
√
d,α in α ∈ [1,∞], we can write that

∥∇θR
p
α(θ)∥ ≥ ∥E[X [1]]∥ − Cp,r

√
d,αE[∥X

[1]∥]

≥ ∥E[X [1]]∥ − (1− 2p)
(
1− σ′(r

√
d)
)
E[∥X [1]∥] > 0, (120)

which is nonnegative by distributional assumption on the skew-symmetric distribution itself, namely we assume that

(1− 2p)(1− σ′(r
√
d)) <

∥E(X [1])∥
E(∥X [1]∥)

. (121)

B Further Experimental Results and Details

B.1 Boosting Experiments

B.1.1 Long-Servedio

Dataset The Long-Servedio dataset is a synthetic dataset which was first suggested in (Long and Servedio, 2008) and
also considered in (Cheamanunkul et al., 2014). The dataset has input x ∈ R21 (which differs from the two-dimensional
theoretical version in Section 3.2) with binary features xi ∈ {−1,+1} and label y ∈ {−1,+1}. Each instance is generated
as follows. First, the label y is chosen to be −1 or +1 with equal probability. Given y, the features xi are chosen according
to the following mixture distribution:

• Large margin: with probability 1/4, we choose xi = y for all 1 ≤ i ≤ 21.

• Pullers: with probability 1/4, we choose xi = y for 1 ≤ i ≤ 11 and xi = −y for 12 ≤ i ≤ 21.

• Penalizers: with probability 1/2, we choose 5 random coordinates from the first 11 and 6 from the last 10 to be equal
to the label y. The remaining 10 coordinates are equal to −y.
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Figure 16: Accuracy of AdaBoost.α on the Long-Servedio dataset. We see that accuracy levels off as α increases, implying
that tuning α can be as simple as choosing α ≈ 5. The thresholding behavior is supported by Figure 10

Figure 17: Clean test accuracy of various models on the Long-Servedio dataset with no added label noise. Models trained
for 100 iterations. Vanilla AdaBoost performs well here, but note that Figure 20 implies that with a larger number of
iterations, α = 1, 2 would have similar performance.
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Figure 18: Clean test accuracy vs the depth of weak learners on the Long-Servedio dataset with SLN. 100 iterations of
boosting. We see that that for low depth weak learners, α > 1 outperforms convex α in terms of clean classification
accuracy. This benefit diminishes with growing depth.

Figure 19: Clean test accuracy vs the depth of weak learners on the Long-Servedio dataset with SLN. 100 iterations of
boosting. In this higher noise setting, α has little effect on the clean test accuracy.
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Figure 20: Clean test accuracy of AdaBoost.α on the Long-Servedio dataset with no added label noise. In this zero noise
setting, convex α values perform well. Performance gains slow with increasing α which corresponds to increasing non-
convexity in the optimization.

Figure 21: Accuracy of AdaBoost.α on the Long-Servedio dataset. We see that convex α < 1, is unable to learn by
increasing the number of weak learners, likely because it is getting stuck trying to learn on large-margin example. α > 1
continues to learn with increasing iterations, though growth is slower than in smaller noise levels.
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Figure 22: Accuracy of AdaBoost.α on the Long-Servedio dataset. We see that convex α < 1, is unable to learn by
increasing the number of weak learners, likely because it is getting stuck trying to learn on large-margin example. α > 1
continues to learn with increasing iterations, though growth is slower than in smaller noise levels.

Figure 23: Accuracy of various models on the breast cancer dataset. We see that with low depth (and thus low complexity)
weak learners, the use of a non-convex loss, namely α > 1, permits some gains in accuracy. These diminish for more
complex weak learners.
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Figure 24: Accuracy of various models on the breast cancer dataset. We see that with low depth (and thus low complexity)
weak learners, the use of a non-convex loss, namely α > 1, permits some gains in accuracy. These diminish for more
complex weak learners.

Figure 25: Accuracy of various models on the breast cancer dataset. We see that with low depth (and thus low complexity)
weak learners, the use of a non-convex loss, namely α > 1, permits some gains in accuracy. These diminish for more
complex weak learners.
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Figure 26: Accuracy of AdaBoost.α on the Wisconsin Breast Cancer dataset. Non-convex α values perform significantly
better than convex α values. Unlike the Long-Servedio dataset, convex α values are still able to learn as the iterations
increase, though there appears to be some overfitting.

Figure 27: Accuracy of AdaBoost.α on the Wisconsin Breast Cancer dataset. Non-convex α values perform significantly
better than convex α values. Unlike the Long-Servedio dataset, convex α values are still able to learn as the iterations
increase, though there appears to be some overfitting.
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Figure 28: Accuracy of AdaBoost.α on the Wisconsin Breast Cancer dataset. Non-convex α values perform significantly
better than convex α values. Unlike the Long-Servedio dataset, convex α values are still able to learn as the iterations
increase, though there appears to be some overfitting.

B.1.2 Breast Cancer

Dataset The Wisconsin Breast Cancer dataset (Wolberg et al., 1995) is a widely used medical dataset in the boosting
community.

B.2 Logistic Model Experiments

B.2.1 GMM Setup

Dataset In order to evaluate the effect of generalizing log-loss with α-loss in the logistic model, we first analyze its
performance learning on a two-dimensional dataset with Gaussian class-conditional distributions. The data was distributed
as follows:

Y = 1 :X ∼ N [µ1, σ
2I],

Y = −1 :X ∼ N [µ2, σ
2I],

where µi ∈ R2, σ ∈ R, and I is the 2× 2 identity matrix.

We evaluate this simple two-dimensional equivariant case for reasons of interpretability and visualization. Additionally,
we tune the prior of Y in order to control the level of class imbalance in the dataset to demonstrate that α-loss works well
even under class imbalance conditions. Symmetric label noise is then added to this clean data.

Under this scenario, the Bayes-optimal classifier is linear because the variances of the two modes are equal and the features
are uncorrelated. We can see this directly through the likelihood ratio test. Thus, we can compare the separating line given
by training with α-loss on the logistic model and the optimal classifier.

Model A logistic model was trained on noisy data, then tested on clean data from the same data generating distribution.
Models were trained over a grid of possible noise values, p ∈ [0, 0.4], and α ∈ [0.5, 10]. Learning rate was selected as
1e−2 and models were trained until convergence. For each pair, 30 models were trained with different noise seeds, and
metrics were then averaged across models.
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Figure 29: Sample dataset generated with Gaussian class-conditional distributions with P (Y = 1) = 0.14 and µ1 =
[1, 1]T , µ2 = [−1,−1]T ; we use a spherical covariance with σ = 1 for both classes.

B.2.2 COVID-19 Logistic Setup

Model For better accuracy and a simpler, interpretable logistic model, we restrict the model to predict using a smaller
set of 8 features; we choose these as the features with the largest odds ratio on the validation set and they are enumerated
in Table 1. The learning rate was selected as 1e−3 and models were trained until convergence. Models were trained over
a grid of possible noise values, p, and α values, (p, α) ∈ [0, 0.15] × [0.6, 3]. For each pair (p, α), 5 models were trained
with a different random noise seed and results were averaged across these samples for every metric.

Baseline Because the underlying true statistics are not available as a ground truth, a “clean” model is selected for a
baseline comparison. We select this model to be one with no added noise (p = 0) and log-loss (α = 1). Because log-loss
(α = 1) is calibrated, the “clean” posterior distribution will be the distribution with the smallest KL divergence to the
data-generating distribution.
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Figure 30: Sensitivity of the classifiers trained on noisy COVID-19 data. We see that α > 1 yields gains in sensitivity.
This is important to note as the MSE results do not come at the cost of sensitivity. Recall that sensitivity = TP

TP+FN .


